THERMOPHORESIS OF (BIO)-COMPOUNDS AND CHELATING AGENTS

Institute of Biological Information (IBI)

IBI-4:Biomacromolecular Systems and Processes

09.04.2024 | BINNY RUDANI

MOTIVATION

Thermophoresis

- ➤ Motion of solute particles induced by thermal gradient.
- Sensitive tool for probing molecular interactions.

$$\vec{j} = \underbrace{-\rho \mathbf{D} \nabla c}_{\text{mixing}} - \underbrace{c (1-c) \rho \mathbf{D}_{T} \nabla T}_{\text{demixing}}$$

Steady state defines Soret coefficient S_T .

$$S_{\rm T} = \frac{D_{\rm T}}{D} \propto \frac{\Delta c}{\Delta T}$$

- mass flux
- c concentration
- D diffusion coefficient
- $D_{\rm T}$ thermodiffusion coefficient
- T temperature
- $S_{\rm T}$ Soret coefficient

$$S_T = 10^{-3} K^{-1} - 1 K^{-1}$$
 molecules colloids

FACTORS INFLUENCING S_T

mass

moment of inertia

size

hydrogen bond network

strong cross interaction

ionic strength

heat of transfer

Figure 5. (Colour online). Soret coefficient S_T of ethanol—water as a function of ethanol mass fraction at various temperatures. See text for references.

A. Königer et al. *Philos Mag* **89**, (2009)907–923.

No microscopic theory for fluids

THERMOPHORESIS

Microscale thermophoresis (MST) □ binding constant K_A

Monitors protein-ligand interaction

OBJECTIVE

Can we quantify the relation between thermodiffusion and hydration

Hypothesis:

Movement in a temperature gradient is sensitive to changes in the hydration layer

WE START WITH A COMPLEX SALT

Hydrophilic anion and hydrophobic cation – stabilizes protein

Hydrophobic anion and hydrophilic cation – denatures protein

Kunz, W. Curr Opin Colloid In 15, 34-39 (2010).

ONGOING STUDY OF GUANIDINUM

Why guanidinum salts?

- > study the hydration of complex molecular species
- highly symmetric and rigid structure
- ➤ has a unique disk-shaped structure characterized by flat hydrophobic surfaces and three amine groups that allow directional hydrogen bonding along the edges
- ➤ Thus, interact favorably with both water and hydrophobic side chains of protein
- simulation and thermodynamic study of protein folding and denaturation

Mason, P. E. et al. J. Am. Chem. Soc. 126, (2004) 11462–11470;

ONGOING STUDY OF GUANIDINUM

Properties of the four studied guanidinium salts

	рН	M _o (g/mol)	Charge density (anion) C/m ²	Log P	Anion radius (pm)	enthalpy (kJ/mol)
GdmCO ₃	~11.5	180.17	-0.80	-44.6	178	-1395
GdmCl	~5	95.53	-0.39	-11.36	181	-365
Gdml	~7.6	186.98	-0.26	-10.4	220	-290
GdmSCN	~7.6	118.16	-0.25	-19.49	213	-310

HOFMEISTER SERIES anions

Llydration

CO32- SO42- S2O32- F- CH3COO- CI- Br- NO3- I- CIO4- SCN-

ONGOING STUDY OF GUANIDINUM

Systematic studies of guanidinium salts (0.5m-3m; 15°C-35°C)

more hydrophilic

CIO

SCN

hydrophobic

more

- Gdm₂CO₃: Most pronounced temperature *and* concentration-dependence
- GdmCl: Minimum in S_T
- Gdml: Sign change in S_T with concentration
- GdmSCN: Negative S_T at most temperatures and concentrations

Fitting:
$$S_T(m,T) = \alpha(m)\beta(T) + S_T^i$$

$$\alpha(m) = a_0 + a_1 m + a_2 m^2 + \dots,$$

$$\beta(T) = 1 + b_1 (T - T_0) + b_2 (T - T_0)^2 + \dots,$$

G. Wittko and W. Köhler, Europhysics Letters 78, 46007 (2007).

Concentration and temperature dependence

$S_{T}^{i} / 10^{-3} \, K^{-1}$ 5 -10 Gdml Gdm_2CO_3 GdmCI GdmSCN

 Anions showed deviation in Hofmeister sequence:

$$CO_3^{2-} > SCN^- \cong I^- > CI^-$$

Temperature dependence

- $\Delta S_{T} (\Delta T) = S_{T}(35^{\circ}C) S_{T}(15^{\circ}C)$
- **Order of** $\Delta S_T(\Delta T)$ at 0.5 mol/kg:

Gdm₂CO₃>Gdml>GdmCl>GdmSCN

ionic

solutes

COMPARISON OF S_T^i FOR DIFFERENT SALTS

- Cations followed Hofmeister series: Gdm⁺>Li⁺>Na⁺>K⁺
- Anions showed deviation at hydrophobic end: CO₃²->Cl->SCN->l-

ANIONS DETERMINE THE MAGNITUDE OF S_T

Concentration dependence at 25°C (Comparison with previously investigated salts)

- Increasing the hydrophilicity of anions, increases S_{τ} (follows Hofmeister series)
- Minimum in S_{τ} :

Gdm₂CO₃ and K₂CO₃ (intricate behaviour)

KI, Nal, and Lil (1 mol/kg)

KSCN and NaSCN (2 mol/kg)

• No minimum in S_T :

$$Na_2CO_3$$
 (S_T decreases),

Gdml and GdmSCN (S_T increases)

ANIONS DETERMINE MAGNITUDE OF S_T

Concentration dependence at 25°C (Comparison with previously investigated salts)

Anions are better hydrated than cations. Thermodiffusion is strongly related to hydration.

"For a cation and an anion with a same radius, the anion has stronger hydration ability." (MD simulation)

J. Zhou et al., Fluid Phase Equilibr. 257(2002) 194-197.

"In general, the cations' effects on the molecular organization of liquid H₂O have been recognized to be weaker than those of anions.." (partial molar enthalpy)

T. Morita et al., J. Phys. Chem. B 118 (2014) 8744.

"...indicating that the anions are more strongly hydrated than the cations ..." (chromatography)

K. D. Collins, PNAS 92 (1995) 5553.

WHY?

Dipole moment distributions around anions shows an asymmetry, which is not observed for cations

Jindal, A et al. J. Phys. Chem. Lett. 15, (2024) 3037-3042

No microscopic picture yet how those differences influence the thermophoretic behaviour?

CONCLUSIONS

- Structural changes in the solvent, in particular the hydrogen bonding network influence the thermophoretic behavior.
- Thermophoretic behavior of salts is majorly influenced by changes of the anion. The reason is not clear yet (ongoing).
- S_T of several salts shows a minimum with concentration.
- S_T^i of various salts does not always follow the Hofmeister series.

OUTLOOK

1. Organic salts – first experiments completed

- Analysing experimental data and interpreting (manuscript JCP in preparation)
- additional experiments of ammonium salts (Gohlke)
- 2. Salts + chelating agents (TDFRS+ITC)
- 3. Proteins (TDFRS, ITC and QENS) cooperation A. Stadler (JCNS-1)

